ESOPHAGEAL MANOMETRY and pH TESTING

Roger P. Tatum, MD Assistant Professor of Surgery, University of Washington

Introduction

Manometry

- Principles
- Normal values
- Motility abnormalities
- New directions: high resolution manometry

Introduction

pH Testing

- Principles
- Normal values and interpreting the study
- pH-impedance and the Bravo probe

Simply put, measure of the (circular) muscle function of the esophagus, including 3 zones:

- Upper esophageal sphincter (UES)
- Esophageal body
- Lower esophageal sphincter (LES)

Unit of measure is pressure, reported in mmHg

Manometry systems consist of:

- Catheter (inserted transnasally or orally), with multiple pressure sensor channels
- Pressure transducers
- Recording device with computer for analysis

Water-perfused system:

- Catheter contains multiple lumens each leading to a side-hole along the catheter length
- Water is pumped continuously through channels and resistance to flow is sensed by transducers
- Relatively reliable and easy to troubleshoot and fix

Solid-state system:

- Catheter incorporates electronic strain-gauge transducers along its length
- Circumferential transducers are useful for measuring LES and UES
- Advantages over water-perfused include:
 - More rapid response to changes in pressure
 - Easier to clean and set up

Esophageal Manometry Technique

- 4 hour fast
- Place catheter transnasally
- Measure Gastric Baseline (LES is relative)
- Position Catheter (station pull-through technique)
- Wet Swallows (usually 10) of 5cc liquid

Esophageal Manometry Method of Analysis

- Identify LES
 - Measure LES length, LES pressure, LESR
 - Identify PIP (pressure inversion point) and LES intraabdominal length
- Analyze Swallows for peristalsis
- Evaluate UES length, pressure, and relaxation
- Run report and make corrections

Normal Manometry Tracing

Normal Manometric Parameters Lower Esophageal Sphincter

 Lower Esophageal Sphincter Resting Pressure (LESP) = 10-45 mmHg

• LES relaxation > 80%

 LES nadir pressure (lowest pressure during relaxation) < 8 mmHg

Note: all pressures are referenced to baseline of intragastric pressure

Normal Manometric Parameters Esophageal Body

• Peristaltic Pressure wave amplitude = 30-180 mmHg

• Pressure wave duration < 6 seconds

Normal peristalsis is defined as at least 80% normal peristaltic sequences

ESOPHAGEAL MOTILTY ABNORMALITIES

Motility Abnormalities Definitions

Achalasia

Ineffective Esophageal Motility

Nutcracker Esophagus

Diffuse Esophageal Spasm

High-Resolution Manometry

Concept:

- Effectively continuous recording of motor activity along entire esophageal length (UES to LES)
- Yields a more complete and detailed picture of esophageal motility
- Potentially better and more accurate characterization of esophageal function than standard manometry

High-Resolution Manometry

Equipment:

- Recording device produces color-contour plot, with time on x-axis, esophageal length on y-axis, and pressure represented by a color scale
- Data between recording sites is interpolated to demonstrate pattern and pressure gradients

High Resolution Manometry Normal Tracing

High-Resolution Manometry

Advantages over standard manometry:

- Technically easy to perform (catheter does not need to be repositioned during study)
- Visualize LES, esophageal body, and UES in detail simultaneously
- Visualize small and/or isolated segments of esophagus
- Compensates for esophageal shortening and movement of LES during swallows, using concept of "e-sleeve" (5-6 channels on distal catheter chosen to record LES)

Classic Achalasia:

Classic Achalasia:

Vigorous Achalasia:

Diffuse Esophageal Spasm:

Nutcracker Esophagus:

Ineffective Esophageal Motility:

32 Pressure Channels

High Resolution Impedance-Manometry

HRIM Probe Key

Circumferential Pressure

Impedance Ring / Directional Pressure

Model: UNI-ESO-W6016

Diameter: 12 French / 4 mm

0 cm (HPZ)

6-19 193 1/63 Meas

ESOPHAGEAL pH MONITORING

24hr pH Monitoring

- Technique (standard 2-channel):
 - Position distal channel 5cm above LES
 - Proximal sensor 15cm above
 - ALL norms based on this position
 - Exclude meals

24hr pH Monitoring

- Analysis:
 - DeMeester score (based on distal channel only)—a complex calculation which factors in:
 - Number of episodes
 - Number of episodes >5min
 - Longest episode
 - % time below pH 4 (total, supine, upright)
 - Correlate with symptoms (Symptom Index): $SI = \frac{\text{Number of symptoms reported that are associated with reflux events}}{\text{Total number of symptoms reported}} \times 100$

24hr pH Monitoring Normal Values

- % Time pH < 4.0:
 - Distal Sensor:
 - Total < 4.2%
 - Upright < 6.3%
 - Supine < 1.2%
 - Proximal Sensor:
 - Upright < 1.3%
 - Supine = 0%
- DeMeester Score: < 14.72 (yes, 14.72!)

pH Testing—the Bravo Probe

Small radio transmitter device that transmits pH data to a recorder worn on patient's belt

- 48 hours of data
- Typically only a single recording site
- Usually better tolerated than nasal catheter (although some patients experience chest pain)
- Probably gives a better picture of a more "typical" day

pH Testing—the Bravo Probe

Step 1. Position the capsule in the esophagus

Step 3. Attach capsule

Step 4. Remove delivery system

Step 5. Begin transmitting pH data to receiver

Impedance Monitoring

- Detects the presence of any material in the esophageal lumen
- Done concomitantly with manometry or pH study
- Gives information about:
 - Esophageal clearance
 - Non acid reflux

Impedance Tracing

Impedance Tracing

Waveform & Bolus Movement

Downward= Oral

Upward= Aboral

Upward= Aboral

Upward= Aboral

Acid Reflux

Non-Acid Reflux

MTT Reflux -	a * 🛛	LPR-Adult Short	- Reflux	MII Reflux
	1			
1 Abovo LES	Pharynx		·	
2	Pharvnx			
Âbove LES	23.5			
3 Above LES	Pharynx 22.0			: :
4 BCT Above LES	Body 2.5			
ADUVE LES	9.0 VhoB	NOT THE AND A REAL PROPERTY AND	THE MA INTER MALE, MANE	: I :
ВСТ Above LES	4.8 7.0	maket and a	W winter and the france	
6 BCT	Body 5.5			
Above LES	5.0			· · ·
7 BCT Above LES	Body 7.4	hummenter		much
ADOVE LES	Body		En E E ME	· · ·
pH Delta Above LES	0.39 5.0	min	ni/ hannen internet in the second	<u>i</u> hu
Position MII	Upright Reflux			
рН	NonAci 💌			<i>س</i> ر <u></u>
		1/13:09:28.8	30	lsec
		:44.0		1 11

Non-Acid Pharyngeal Reflux

MII Reflux -	A* 🗙	LPR-Adult Short	-	Reflux	MII Reflux
	1				
1] Phan/ny				
Above LES	22.0				
2 807	Pharynx				
Above LES	23.5				
3	Pharynx				
BCT Above LES	0.2 22 0			·	
4	Body				
	8.0				
Above LES	9.0				
5 BCT	Воду 8.4			L~	
Above LES	7.0				
6 800 T	Body 93				
Above LES	5.0			:	
7	Body 9.8 3.0	:	$\mathbf{\vee}$:	
Above LES				<u></u>	
8	Body 0.98 5.0	:		:	
pH Delta Above LES				<u></u>	
Recition		:		:	
MI	Reflux				
рн	NonAci 💌				
		······································		<u></u>	
		<u>_</u>			
		1/14:16:59.8			
					1 II 1 II
	1 1711.18	:44.0			

Impedance-pH Monitoring Normal Values

- Number of Reflux Episodes:
 - Total < 73
 - Acid < 55
 - Weakly Acid or Non-acid < 27
- Duration of Episodes < 44 sec.

Shay S, et al., Am J Gastroenterol 2004

Conclusion

- Standard esophageal manometry uses either water-perfused or solid-state catheter assemblies to measure changes in pressure of the esophagus, including measurement of the LES, esophageal body (peristalsis), and UES
- This represents circular muscle contraction
- Patterns of abnormal motility such as achalasia, diffuse esophageal spasm, and hypercontractile (nutcracker) esophagus are distinguished by specific defects in LES relaxation, peristalsis, or both

Conclusion

- High-resolution esophageal manometry increases the information produced and displayed in each study, facilitating interpretation and potentially yielding new findings
- Standard pH monitoring involves measurement of pH changes at two sites in the esophageal body (5 and 15 cm above the LES) over a 24-hour period
- Results of pH monitoring are expressed in time during which pH is below 4.0 and a the complex calculation of the DeMeester score

Conclusion

- Bravo-probe pH monitoring involves a single sensor without a transnasal wire, and a 48-hour recording period
- Impedance pH monitoring adds the ability to evaluate nonacid reflux in addition to acid reflux events, which may be beneficial in evaluating atypical reflux symptoms (such as respiratory symptoms)